Circumference and Area

Topic/Skill	Definition/Tips	Example
1. Circle	A circle is the locus of all points equidistant from a central point.	
2. Parts of a Circle	Radius - the distance from the centre of a circle to the edge Diameter - the total distance across the width of a circle through the centre. Circumference - the total distance around the outside of a circle Chord - a straight line whose end points lie on a circle Tangent - a straight line which touches a circle at exactly one point Arc - a part of the circumference of a circle Sector - the region of a circle enclosed by two radii and their intercepted arc Segment - the region bounded by a chord and the arc created by the chord	
3. Area of a Circle	$\boldsymbol{A}=\boldsymbol{\pi} \boldsymbol{r}^{2}$ which means 'pix radius squared'.	If the radius was 5 cm , then: $A=\pi \times 5^{2}=78.5 \mathrm{~cm}^{2}$
4. Circumference of a Circle	$\boldsymbol{C}=\boldsymbol{\pi} \boldsymbol{d}$ which means 'pi \times diameter'	If the radius was 5 cm , then: $C=\pi \times 10=31.4 \mathrm{~cm}$
5. π ('pi')	Pi is the circumference of a circle divided by the diameter. $\pi \approx 3.14$	
6. Arc Length of a Sector	The arc length is part of the circumference. Take the angle given as a fraction over 360° and multiply by the circumference.	$\text { Arc Length }=\frac{115}{360} \times \pi \times 8=8.03 \mathrm{~cm}$
7. Area of a Sector	The area of a sector is part of the total area. Take the angle given as a fraction over 360° and multiply by the area.	$\text { Area }=\frac{115}{360} \times \pi \times 4^{2}=16.1 \mathrm{~cm}^{2}$

8. Surface Area of a Cylinder	Curved Surface Area $=\boldsymbol{\pi d h}$ or $\mathbf{2 \pi r h}$ Total SA $=2 \pi r^{2}+\pi d h$ or $2 \pi r^{2}+2 \pi r h$	
9. Surface Area of a Cone	Curved Surface Area $=\pi r l$ where $l=$ slant height Total SA $=\pi r l+\pi r^{2}$ You may need to use Pythagoras' Theorem to find the slant height	
10. Surface Area of a Sphere	$S A=4 \pi r^{2}$ Look out for hemispheres - halve the SA of a sphere and add on a circle (πr^{2})	Find the surface area of a sphere with radius 3 cm . $S A=4 \pi(3)^{2}=36 \pi \mathrm{~cm}^{2}$

Compound area

Topic/Skill	Definition/Tips	Example
1. Metric System	A system of measures based on: - the metre for length - the kilogram for mass - the second for time Length: mm, cm, m, km Mass: $\mathrm{mg}, \mathrm{g}, \mathrm{kg}$ Volume: ml, cl, l	```1kilometres = 1000 metres 1 \text { metre = 100 centimetres} 1 \text { centimetre = 10 millimetres} 1 kilogram = 1000 grams```
2. Imperial System	A system of weights and measures originally developed in England, usually based on human quantities Length: inch, foot, yard, miles Mass: lb, ounce, stone Volume: pint, gallon	$1 \mathrm{lb}=16$ ounces 1 foot $=12$ inches 1 gallon $=8$ pints
3. Metric and Imperial Units	Use the unitary method to convert between metric and imperial units.	5 miles ≈ 8 kilometres 1 gallon ≈ 4.5 litres 2.2 pounds ≈ 1 kilogram 1 inch $=2.5$ centimetres
4. Speed, Distance, Time	Speed = Distance \div Time Distance = Speed x Time Time $=$ Distance \div Speed Remember the correct units.	Speed $=4 \mathrm{mph}$ Time $=2$ hours Find the Distance. $D=S \times T=4 \times 2=8 \text { miles }$
5. Density, Mass, Volume	Density $=$ Mass \div Volume Mass = Density x Volume Volume $=$ Mass \div Density Remember the correct units.	$\begin{aligned} & \text { Density }=8 \mathrm{~kg} / \mathrm{m}^{3} \\ & \text { Mass }=2000 \mathrm{~g} \end{aligned}$ Find the Volume. $V=M \div D=2 \div 8=0.25 \mathrm{~m}^{3}$
6. Pressure, Force, Area	Pressure = Force \div Area Force = Pressure x Area Area $=$ Force \div Pressure	$\begin{aligned} & \text { Pressure }=10 \text { Pascals } \\ & \text { Area }=6 \mathrm{~cm}^{2} \end{aligned}$

		Find the Force
		$F=P \times A=10 \times 6=60 \mathrm{~N}$

Drawing, Measuring and Estimating Angles

1	Angle	Where two line segments meet the measure of rotation from one segment to the other.
2	Acute Angle	An angle between 0° and 90°.

Pathway 3

Unit 2 - Drawing, Measuring and Estimating Angles

1		Where two line segments meet the measure of rotation from one segment to the other.	
2		An angle between 0° and 90°.	
3		An angle which is exactly 90°. We use a small square to represent a right angle.	
4		An angle between 90° and 180°.	
5		An angle which is greater than 180°.	
6		The unit that we measure angles in. We use this symbol	265°
7		Line segments which meet at right angles	
8		A mathematical guess. I use my knowledge about angles to estimate the size of an angle.	
9		The piece of equipment we use to measure angles.	

Pathway 3

Unit 2 - Drawing, Measuring and Estimating Angles

Pathway 3
Unit 2 - Drawing, Measuring and Estimating Angles

Formulae, Sequences and Rules

1	Expression	A mathematical statement written using symbols, numbers or letters.	$6+9$ $5 x+8$ $5 y^{2}$
2	Equation	A statement showing that two expressions are equal.	$6+9=15$ $2 y-17=15$
3	Formula	An equation linking sets of physical variables. The plural is formulae.	$s=\frac{d}{t}$
4	Variable	A letter representing an unknown number.	$5+8=38$ x is the variable
5	Substitute	Putting a number where a variable is shown.	Example if a $=10$, calculate 4a +2
6	Sequence	An ordered set of numbers, shapes or other mathematical objects arranged according to a rule.	Examples: $3,7,11,15,19$ $1,4,9,16,25$
7	Arithmetic Sequence / Linear Sequence	A sequence in which terms are generated by adding or subtracting a constant amount each time.	Examples: $1,3,5,7,9,11$ $8,12,16,20,24$

Formulae, Sequences and Rules

1		A mathematical statement written using symbols, numbers or letters.	$6+9$ $5 x+8$ $5 y^{2}$
2		A statement showing that two expressions are equal.	$6+9=15$ $2 y-17=15$
3		An equation linking sets of physical variables. The plural is formulae.	A letter representing an unknown number.
4		Putting a number where a variable is shown.	Example if a = 10, calculate 4a +2
5		An ordered set of numbers, shapes or other mathematical objects arranged according to a rule.	Examples: $3,7,11,15,19$ $1,4,9,16,25$
6		A sequence in which terms are generated by adding or subtracting a constant each time.	Examples: 1357911 $8 ~ 12 ~ 16 ~ 20 ~ 24 ~$
7			

Formulae, Sequences and Rules

1	Expression		$\begin{gathered} 6+9 \\ 5 x+8 \\ 5 y^{2} \end{gathered}$
2	Equation		$\begin{gathered} 6+9=15 \\ 2 y-17=15 \end{gathered}$
3	Formula		$s=\frac{d}{t}$
4	Variable		$5+8=38$ x is the variable
5	Substitute		Example if $\mathrm{a}=10$, calculate $4 a+2$
6	Sequence		Examples: $\begin{aligned} & 3,7,11,15,19 \\ & 1,4,9,16,25 \\ & \hline \end{aligned}$
7	Arithmetic Sequence / Linear Sequence		Examples: 1357911 812162024

Formulae, Sequences and Rules

1		A mathematical statement written using symbols, numbers or letters.	$6+9$ $5 x+8$ $5 y^{2}$
2		A statement showing that two expressions are equal.	$6+9=15$ $2 y-17=15$
3		An equation linking sets of physical variables. The plural is formulae.	$5=\frac{d}{t}$
4	Variable		$5+8=38$ Substitute
5		An ordered set of numbers, shapes or other mathematical objects arranged according to a rule.	Examples: $3,7,11,15,19$ $1,4,9,16,25$
6		A sequence in which terms are generated by adding or subtracting a constant each time.	Examples: 1357911 8
7			

Fractions

1	Fraction	The result of dividing one integer by a second integer (which must not be zero). It relates parts to a whole.	means one out of three	
2	Vinculum	The fraction line. Denominator	The numerator is the top number in a fraction. The denominator is the bottom number in a fraction.	$\frac{3}{4} \leftarrow_{\text {Nenominator }}$

Introduction to Algebra

1	Expression	A mathematical statement written using symbols, numbers or letters.	$\begin{gathered} 6+9 \\ 5 x+8 \\ 5 y^{2} \end{gathered}$
2	Equation	A statement showing that two expressions are equal.	$\begin{gathered} 6+9=15 \\ 2 y-17=15 \end{gathered}$
3	Coefficient	A number used to multiply a variable. It can be a letter.	$6 x$ The coefficient is 6 .
4	$x+1$	A number plus 1.	
5	$x-1$	A number subtract 1.	
6	$1-x$	Subtract a number from 1.	
7	$5 x$	Multiplying a number by 5.	
8	$\frac{x}{4}$	A number divided by 4.	
9	$\frac{4}{x}$	4 divided by a number.	
10	x^{2}	A number squared.	$x \times x$
11	x^{3}	A number cubed.	$x \times x \times x$
12	$x y$	A number multiplied by another number.	$x \times y$
13	Simplify Expressions	To write the expression in the simplest way possible.	$\begin{gathered} \text { Simplify } 5 x \times 7 \\ =35 x \end{gathered}$
14	Collect Like Terms	The way that you simplify expressions which are added or subtracted. You can only add or subtract terms which have the same letter and power.	Simplify $\begin{aligned} & 2 x+3 y+4 x-5 y \\ & =6 x-2 y \end{aligned}$
15	$5(x+3)$	Five lots of $x+3$.	
16	Expand Brackets	Multiply out the brackets.	$5(x+3)=5 x+15$
17	$x+x=$	$2 x$	
18	$7 x+8 x=$	$15 x$	
19	$7 x-4 x=$	$3 x$	

Introduction to Algebra

1		A mathematical statement written using symbols, numbers or letters,	$\begin{gathered} 6+9 \\ 5 x+8 \\ 5 y^{2} \end{gathered}$
2		A statement showing that two expressions are equal.	$\begin{gathered} 6+9=15 \\ 2 y-17=15 \end{gathered}$
3		The number in front of the letter.	$6 x$ The coefficient is 6 .
4	$x+1$		
5	$x-1$		
6	$1-x$		
7	$5 x$		
8	$\frac{x}{4}$		
9	$\frac{4}{x}$		
10	x^{2}		$x \times x$
11	x^{3}		$x \times x \times x$
12	$x y$		$x \times y$
13	Simplify expressions	To write the expression in the most simple way possible.	$\begin{gathered} \text { Simplify } 5 x \times 7 \\ =35 x \end{gathered}$
14	Collect like terms	The way that you simplify expressions which are added or subtracted. You can only add or subtract terms which have the same letter and power.	Simplify $\begin{aligned} & 2 x+3 y+4 x-5 y \\ & =6 x-2 y \end{aligned}$
15	$5(x+3)$	Five lots of $x+3$.	
16	Expand brackets	Multiply out the brackets.	$5(x+3)=5 x+15$
17	$x+x=$	$2 x$	
18	$7 x+8 x=$	$15 x$	
19	$7 x-4 x=$	$3 x$	

Introduction to Algebra

1		A mathematical statement written using symbols, numbers or letters,	$6+9$
2		A statement showing that two expressions are equal.	$5 x+8$
		The number in front of the letter.	
3	$x+1$		$2 y-17=15$
4	$x-1$		The coefficient is 6.

Large and Negative Numbers

Lines and Angles

1		Lines that never meet because they are always the same distance from each other.	
2		Lines that meet at right angles to each other.	
3		Where two line segments meet the measure of rotation from one segment to the other.	Angles on a straight line sum to 180
4		Angles around a point sum to 360․	
5			Vertically opposite angles are equal.
7			Interior angles of a triangle sum to 180
8			

1		Lines that never meet because they are always the same distance from each other.	
2		Lines that meet at right angles to each other.	
3		Where two line segments meet the measure of rotation from one segment to the other.	
5	Around a Point		
6	Vertically Opposite		
7			
8			

Lines and Angles

1	Parallel Lines		\rightarrow $>$
2	Perpendicular Lines		
3	Angle		
4		Angles on a straight line sum to 180°.	
5		Angles around a point sum to 360°.	
6		Vertically opposite angles are equal.	
7	Triangles		
8	Quadrilaterals		

Multiplication and Division

1	Product	The result of multiplying two numbers together.	The product of 2 and 3 is 6 because $2 \times 3=6$.
2	Sum	The result of adding two numbers together.	The sum of 2 and 3 is 5 because $2+3=5$.
3	Commutative	The order of numbers involved in an operation does not matter and does not affect the answer. Addition and multiplication are commutative. Subtraction and division are not commutative.	$\begin{aligned} & 3+2=2+3 \\ & 4 \times 5=5 \times 4 \\ & 3-2 \neq 2-3 \\ & 10 \div 2 \neq 2 \div 10 \end{aligned}$
4	Long Multiplication	When we multiply two large numbers together we can use the long multiplication method.	
5	Dividend	The number that is being divided.	dividend \div divisor $=$ quotient$30 \div 6=5$
6	Divisor	The number by which another is divided.	
7	Quotient	The result of a division.	
8	Short Division	A written method of dividing.	
9	Grid Method	This method is used for multiplication. It involves partitioning numbers into hundreds, tens and units before they are multiplied.	35×7
			$\times \quad 30 \quad 5$
			7 210 35
			$\mathbf{2 1 0}+\mathbf{3 5}=\mathbf{2 4 5}$
10	Column Method	This method of multiplication, addition and subtraction is the method where numbers are 'carried' or 'borrowed'.	The column method for multiplication the carried numbers can go above or below. $\begin{array}{r} 237 \\ \times \quad 4 \\ \hline 948 \end{array}$

Pathway 4

Unit 2 - Multiplication and Division

1		The result of multiplying two numbers together.	The product of 2 and 3 is 6 because $2 \times 3=$ 6.
2		The result of adding two numbers together.	The sum of 2 and 3 is 5 because $2+3=$ 5.
3	Commutative		$\begin{aligned} & 4 \times 7=7 \times 4 \\ & 4+7=7+4 \end{aligned}$
4	Long Multiplication	When we multiply two large numbers together we can use the long multiplication method.	$\begin{array}{r} 7232 \\ 16 \mathrm{X} \\ \hline 43392 \\ 447 \\ 72320 \\ \hline 115712 \end{array}$
5		The number that is being divided.	$\begin{gathered} 30 \div 16=5 \\ \text { dividend } \div \text { divisor }=\text { quotient } \end{gathered}$
6	Divisor		
7		The result of a division	
8	Short division	A written method of dividing.	$186+6=\begin{array}{llll} 0 & 3 & 1 \\ 6 & 1^{1} 8 & 6 \end{array}$

Pathway 4

Unit 2 - Multiplication and Division
\(\left.\left.$$
\begin{array}{|l|l|l|l|}\hline 1 & \text { Product } & & \begin{array}{l}\text { The product of } \\
2 \text { and 3 is 6 } \\
\text { because 2 x 3 }\end{array} \\
6 .\end{array}
$$\right] \begin{array}{l}The sum of 2

and 3 is 5

because 2 + 3 =

5 .\end{array}\right]\)| $4 \times 7=7 \times 4$ |
| :--- |
| 2 |

Pathway 4

Unit 2 - Multiplication and Division

1			
2			
3			
4			
5			
6			
7			
8			

Percentages

1	Percentage	A percentage is a fraction expressed as the number of parts per hundred. It is recorded using the notation $\%$	89% 105% 0.67%
2	Vinculum	The fraction line.	$\frac{3}{4}$
3	Write an amount as a percentage of another	Write as a fraction and multiply by 100.	$\frac{14}{17} \times 100=82.4 \%$ (1dp)

Pathway 6

Unit 4 - Percentages
MEA

Pathway 6

Unit 4 - Percentages
MEA

1	Percentage		$\begin{gathered} 89 \% \\ 105 \% \\ 0.67 \% \end{gathered}$
2	Vinculum		$\frac{3}{4}$
3	Write an amount as a percentage of another		$\frac{14}{17} \times 100=82.4 \%_{(1 d p)}$
4	Find 10% of an amount		$56 \div 10=5.6$
5	Find 1\% of an amount		$56 \div 100=0.56$
6	Find 5% of an amount		$(56 \div 10) \div 2=2.8$
7	Find 20\% of an amount		$(56 \div 10) \times 2=11.2$
8	Percentage Multiplier		Find 57% of 893 $893 \times 0.57=509.01$
9	Percentage Increase/Decrease		Increase 500 by 20% (N-Calc) 10% of $500=50$ so 20% of $500=100$ $500+100=600$ Decrease 800 by 17% (Calc): $100 \%-17 \%=83 \%$ $83 \% \div 100=0.83$
10	Percentage Change		$\frac{\text { new value }- \text { original value }}{\text { orginal value }} \times 100$
11	0.5		50\%
12	0.25		25\%
13	0.75		75\%
14	0.2		20\%
15	0.125		12.5\%
16	0.7		70\%
17	$0 . \dot{3}$		$33.3 \%_{(1 \mathrm{dp})}$

Pathway 6
Unit 4 - Percentages

Topic: Perimeter and Area

Topic/Skill	Definition/Tips	Example		
1. Perimeter				
Shape.				
Units include: $\mathrm{mm}, \mathrm{cm}, \mathrm{m}$ etc.			\quad	The amount of space inside a shape.
:---				
Units include: $\mathrm{mm}^{2}, \mathrm{~cm}^{2}, \mathrm{~m}^{2}$				

Place Value

1	Integer	A whole number. It can be negative or positive.	$-7,4,0,2,19,897$
2	Decimal	A number with a decimal point in it. It can be positive or negative.	$\begin{aligned} & 4.5 \\ & -4.5 \end{aligned}$
3	Place Value	The value of a digit that relates to its position or place in a number.	5300 The value of the 3 is 300
4	Digits	The symbols we use to write a number.	456 has 3 digits
5	Place Value Columns	The names of the columns tell us the value of the digits.	
6	Ordering	Putting a list of numbers in order. Ascending is from smallest to greatest. Descending is from greatest to smallest.	Ascending order: $7,13,45,78,124$ Descending order: $567,67,42,16,3$
7	Partitioning	Splitting a number up.	$\stackrel{\downarrow}{100} \stackrel{1}{156} \downarrow_{6}$
9	Reading Large Numbers	Start at the decimal point and work your way left along the place value chart to find the value of each digit up to 1,000 .	$1,256$ One thousand, two hundred and fifty six.
10	Comparing Numbers	We use these symbols = Equal to < Less than $>$ Greater than \geq Greater than or equal to \leq Less than or equal to	$3<6$ 3 is less than 6 $6>3$ 6 is greater than 3
11	Positive numbers	Numbers that are greater than zero.	5 is positive 5.
12	Negative Numbers	Numbers that are less than zero.	- 5 is negative 5.
13	Rounding	To change a number to a similar number which is either easier to read or easier to calculate with. If the digit to the right of the rounding digit is less than 5 , round down.	74 rounded to the nearest ten is 70 , because 74 is closer to 70 than 80 .

Topic/Skill	Definition/Tips	Example	Your Turn
Probability	The likelihood/chance of something happening. Is expressed as a fraction, decimal, percentage between 0 (impossible) and 1 (certain).		The chance of flipping a coin and getting heads is: The chance of flipping a coin and it flying into space is:
Sample	A sample is a small selection of items from a population. A sample is biased if individuals or groups from the population are not represented in the sample.	A sample could be selecting 10 students from a year group at school.	I want to know about the favourite subjects of all pupils in our school. I conduct a survey asking girls in Year 11. What is wrong with my sample?
Sample Size	The larger a sample size, the closer those probabilities will be to the true probability.	A sample size of 100 gives a more reliable result than a sample size of 10.	Why don't survey's just ask everyone in the population?
Theoretical Probability	$\frac{\text { Number of Favourable Outcomes }}{\text { Total Number of Possible Outcomes }}$	Probability of rolling a 4 on a fair 6 sided die $=\frac{1}{6}$	The probability of rolling an even number on a fair 6 -sided dice is:
Relative Frequency	$\frac{\text { Number of Successful Trials }}{\text { Total Number of Trials }}$	A coin is flipped 50 times and lands on Tails 29 times. The relative frequency of getting $\text { Tails }=\frac{29}{50} \text {. }$	A dice is rolled 100 times and lands on 314 times. The relative frequency of getting $3=$

Exhaustive	Outcomes are exhaustive if they cover the entire range of possible outcomes. The probabilities of an exhaustive set of outcomes adds up to 1 .	When rolling a six-sided die, the outcomes 1, 2, 3, 4, 5 and 6 are exhaustive, because they cover all the possible outcomes. $\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{6}{6}=1$	When flipping a coin...
Mutually Exclusive	Events are mutually exclusive if they cannot happen at the same time. The probabilities of an exhaustive set of mutually exclusive events adds up to 1 .	Examples of mutually exclusive events: - Turning left and right - Heads and Tails on a coin Examples of non mutually exclusive events: - King and Hearts from a deck of cards, because you can pick the King of Hearts	Put a tick or a cross for mutally exclusive (\checkmark) and non mutually exclusive (\mathbf{X}) events: Choosing a random pupil in a high school survey: - Getting someone with glasses or someone without glasses - Getting someone in Year 10 or in Year 11 - Getting a boy in Year 7 or a girl in Year 7
Independent Events	The outcome of a previous event does not influence/affect the outcome of a second event.	An example of independent events could be being late to school and eating a jacket potato for lunch	Tick the correct example: - Being in Year 7 and being in KS3 - Being a boy and liking maths
Dependent Events	The outcome of a previous event does influence/affect the outcome of a second event.	An example of dependent events could be being late to school and missing the train	Tick the correct example: - Flipping a coin and getting heads, and then flipping and getting heads again - Pulling a green marble out of a bag and then pulling another green marble

Expected Outcomes	To find the number of expected outcomes, multiply the probability by the number of trials.	The probability that a football team wins is 0.2 How many games would you expect them to win out of 40 ? $0.2 \times 40=8 \text { games }$	I roll a fair 6-sided dice 300 times. How many times would you expect to get a 5 ?
Probability Notation	$P(A)$ refers to the probability that event A will occur. $P\left(A^{\prime}\right)$ refers to the probability that event A will not occur. $P(A \cup B)$ refers to the probability that event A or B or both will occur. $P(A \cap B)$ refers to the probability that both events A and B will occur.	P(Red Queen) refers to the probability of picking a Red Queen from a pack of cards. P(Blue') refers to the probability that you do not pick Blue. P(Blonde \cup Right Handed) refers to the probability that you pick someone who is Blonde or Right Handed or both. P(Blonde \cap Right Handed) refers to the probability that you pick someone who is both Blonde and Right Handed.	All these are for fair 6-sided dice: $\begin{aligned} & P(6) \text { refers to... } \\ & P(1 \cup 6) \ldots \\ & P\left(5^{\prime}\right) \ldots \\ & P(3 \cap 4) \ldots \end{aligned}$
AND rule for Probability	When two events, A and B, are independent: $P(A \text { and } B)=P(A) \times P(B)$	What is the probability of rolling a 4 and flipping a Tails? $\begin{gathered} P(4 \text { and Tails })=P(4) \times P(\text { Tails }) \\ =\frac{1}{6} \times \frac{1}{2}=\frac{1}{12} \end{gathered}$	What is the probability of rolling a 3 and flipping a Heads?

OR rule for Probability	When two events, A and B, are mutually exclusive: $P(A \text { or } B)=P(A)+P(B)$	What is the probability of rolling a 2 or rolling a 5 ?$\begin{gathered} P(2 \text { or } 5)=P(2)+P(5) \\ =\frac{1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{3} \end{gathered}$							What is the probability of flipping and getting a Heads or a Tails?			
Frequency Tree	A diagram showing how information is categorised into various categories. The numbers at the ends of branches tells us how often something happened (frequency). You can work out the missing numbers by making sure they add up.											
Sample Space	The set of all possible outcomes of an experiment. For example, the diagram shows all the different possible outcomes of rolling two dice and adding the scores.		1	2	3	4	5	6	Spinner 2	\times	Spinner 1	
			2	3	4	5	6	7			2	3
			3	4	5	6	7	8				
			4	5	6	7	8	9				
			5	6	7	8	9	10		3		
			6	7	8	9	10	11				
			7	8	9	10	11	12				

Tree Diagrams	Tree diagrams show all the possible outcomes of an event and calculate their probabilities. All branches must add up to 1 when adding downwards. This is because the probability of something not happening is 1 minus the probability that it does happen. They are exhaustive. Multiply going across a tree diagram to work out the probability of both events happening. Fractions or decimals, the process is the same	The probability of getting a Black from Bag A and a Red from Bag B is $\frac{4}{5} \times \frac{1}{3}=\frac{4}{15}$	James goes to an arcade. He has one go on the Teddy Grabber. He has one go on the Penny Drop. The probability that he wins on the Teddy Grabber is 0.2 . The probability that he wins on the Penny Drop is 0.3 . Find the probability that he wins both games:
Conditional Probability	The probability of an event A happening, given that event B has already happened. With conditional probability, check if the numbers on the second branches of a tree diagram changes. For example, if you have 4 red beads in a bag of 9 beads and pick a red bead on the first pick, then there will be 3 red beads left out of 8 beads on the second pick.		Draw a tree diagram for a bag with 5 red marbles and 5 yellow marbles, with two counters picked:

Venn Diagrams	A Venn Diagram shows the relationship between a group of different things and how they overlap. You may be asked to shade Venn Diagrams as shown below and to the right. The Union The Intersection 'A or B or Both' 'A intersection	$(A \cap B)^{\prime}$ $(A \cup B)$	
Venn Diagram Notation	\in means 'element of a set' (a value in the set) \{ \} means the collection of values in the set. ξ means the 'universal set' (all the values to consider in the question) A' means 'not in set A' (called complement) $A \cup B$ means ' A or B or both' (called Union) $A \cap B$ means ' A and B (called Intersection)	Set A is the even numbers less than 10. $A=\{2,4,6,8\}$ Set B is the prime numbers less than 10 . $B=\{2,3,5,7\}$ $A \cup B=\{2,3,4,5,6,7,8\}$ $A \cap B=\{2\}$	Set A is the odd numbers less than 15. $A=$ Set B is the square numbers less than 30. $B=$ $A \cup B=$ $A \cap B=$ $A^{\prime} \cap B=$

Properties of Shapes

1	2 D	Two-dimensional. Describes a plane (flat) shape with a length and width.	Examples of 2D shapes include: triangle, square, pentagon
2	3 D	Three-dimensional Describes a solid shape with a length, width and depth.	Examples of 3D shapes include a: cube, sphere, prism
3	Polygon	A plane shape with three or more straight sides.	
4	Triangle	A polygon with three sides. Right- Tangle Triangle	A triangle with one internal right- angle.
6	Tquilateral Triangle	A triangle which has three equal length sides and internal angles which measure 60°.	
7	Isosceles Triangle	A triangle which has two sides of equal length and equal sized base angles.	
10	Scalene Triangle	A triangle where the three sides are of different length.	
9	Square	A polygon with four equal length sides and four internal right angles.	
10	A polygon with two pairs of opposite equal length sides and four internal right angles		

Ratio

1	Proportion	A part to whole comparison. Any two variables are directly proportional if they are related in the same ratio by a multiplier in the form $y=k x$.	$£ 20$ is shared between two people in the ratio $3: 5$, the first person received $3 / 8$ of the whole. This is their proportion of the whole. In currency exchange the ratio $£ 1$: $€ 1.20$ shows that pounds are directly proportional to euros. £1 = 1.2 x Euros
2	Ratio	Ratio compares the size of one part to another part.	The order is important, the ratio of a to b is written $a: b$
3	Unitary ratio	A part to part comparison where one part is 1. It is written as $1: \mathrm{n}$ or $\mathrm{n}: 1$	
4	Fraction	Any part of a group, number or whole. The numerator tells us how many parts we have. The denominator tells us how many parts the whole has been split into.	$\frac{\text { Numerator }}{\text { Denominator }}$
5	Respectively	One after the other in the order already mentioned.	

Representing Data

$\left.\begin{array}{|l|l|l|l|}\hline 1 & \text { Data } & \begin{array}{l}\text { A collection of information. Usually } \\ \text { gathered by observation, } \\ \text { questioning or measurement. }\end{array} & \begin{array}{l}\text { There are two types of data: } \\ \text { Continuous data can have an infinite } \\ \text { number of possible values within a } \\ \text { selected range. For example, height } \\ 158.5 \mathrm{~cm}, 142.028 \mathrm{~cm}, 180.1 \mathrm{~cm} .\end{array} \\ \text { Discrete data only has a limited number } \\ \text { of possible values. For example, shoe } \\ \text { size } 5,51 / 2,6,61 / 2,7 \text { etc. }\end{array}\right\}$

Unit 8 - Representing Data

1		A collection of information. Usually gathered by observation, questioning or measurement.	There are two types of data: Continuous data can have an infinite number of possible values within a selected range. For example, height $158.5 \mathrm{~cm}, 142.028 \mathrm{~cm}, 180.1 \mathrm{~cm}$. Discrete data only has a limited number of possible values. For example, shoe size 5, 512, 6, 612, 7 etc.
2		The number of times a particular item appears in a set of data.	In maths we have frequency tables which show the number of items in a data set.
3		From the Old French interpreter which meant "explain or translate". It means to expound the meaning, render clear or explicit.	To interpret data using graphs means to find meaning from the graph and to understand what it is telling us.
4		From the Old French representer "present, show or display". It means to symbolise, to serve as a sign.	To represent data is to make it present and show what it means. This means to turn 'raw' data into a graph.
5		There are many types of graph. Examples include bar graph, pie chart and pictogram.	(

Pathway 5

Unit 8 - Representing Data

1	Data		There are two types of data: Continuous data can have an infinite number of possible values within a selected range. For example, height $158.5 \mathrm{~cm}, 142.028 \mathrm{~cm}, 180.1 \mathrm{~cm}$. Discrete data only has a limited number of possible values. For example, shoe size $5,51 / 2,6,6112,7$ etc.
2	Frequency		In maths we have frequency tables which show the number of items in a data set.
3	Interpreting		To interpret data using graphs means to find meaning from the graph and to understand what it is telling us.
4	Represent		To represent data is to make it present and show what it means. This means to turn 'raw' data into a graph.
5	Types of Graph		

Unit 8 - Representing Data

1		A collection of information. Usually gathered by observation, questioning or measurement.	There are two types of data: Continuous data can have an infinite number of possible values within a selected range. For example, height $158.5 \mathrm{~cm}, 142.028 \mathrm{~cm}, 180.1 \mathrm{~cm}$. Discrete data only has a limited number of possible values. For example, shoe size 5, $51 / 2,6,61 / 2,7$ etc.
2		The number of times a particular item appears in a set of data.	In maths we have frequency tables which show the number of items in a data set.
3		From the Old French interpreter which meant "explain or translate". It means to expound the meaning, render clear or explicit.	To interpret data using graphs means to find meaning from the graph and to understand what it is telling us.
4	Represent		To represent data is to make it present and show what it means. This means to turn 'raw' data into a graph.
5	Types of Graph		

Rounding and Arithmetic

1	Rounding	To change a number to a similar number which is either easier to read or easier to calculate with. If the digit to the right of the rounding digit is less than 5 , round down.	We can round to a number of decimal places or significant figures, to the nearest 10,100 or 1000 , or to the nearest integer.
2	Upper Boundary	The highest that a number could have been before it was rounded.	
3	Lower Boundary	The lowest that a number could have been before it was rounded.	
4	Distributive Law	The Distributive Law states that multiplying a number by a group of numbers added together is the same as doing each multiplication separately.	12×3 is the same as $(10 \times 3)+(2 \times 3)$ or $(8 \times 3)+(4 \times 3)$
5	Commutative Law	The Commutative Law states that the answer of any sum or product is unchanged by re-ordering the calculation. Addition and multiplication are commutative.	$\begin{aligned} & 3 \times 4=4 \times 3 \\ & 3+4=4+3 \end{aligned}$
6	Grid Method	This method is used for multiplication. It involves partitioning numbers into hundreds, tens and units before they are multiplied.	$35 \times 7$$\times$ 30 5 7 210 35$210+35=245$
7	Column Method	This method of multiplication, addition and subtraction is the method where numbers are 'carried' or 'borrowed'.	The column method for multiplication the carried numbers can go above or below.

Pathway 2

Unit 4 - Rounding and arithmetic

The Probability Scale

1	Probability	The likelihood of an event happening. It can be expressed in words or in numbers on a scale from 0 to 1. We write probabilities as fractions, decimals or percentages.	
2	Impossible	The probability is 0.	It is impossible to roll a 7 on a normal die.
3	Certain	Even Chance	The probability is 1. Also called fifty-fifty chance or evens.
4	Total Probability	It is certain that you will roll a number between 1- 6 on a normal die.	
5	All the probabilities of an event, where of getting tails when flipping a coin.		
6	Outcome	The result of a single trial of an experiment.	
7	Mutually Exclusive	Events are mutually exclusive if it is impossible for them to both happen at the same time.	Flipping a heads or tails on a coin is mutually exclusive. You cannot get both at the same time.

Time

1	Quarter-past	It is fifteen minutes past the hour. The minute hand is pointing to the 3 .	Quarter-past Eight Eight Fifteen 8:15
2	Quarter-to	It is 15 minutes until the next hour. The minute hand is pointing to the 9 .	Quarter-to Ten Nine Forty-five 9:45
3	Five-past, Ten-past, Twenty-past, Twenty-five-past'	It is this many minutes past the hour.	
4	Five-to, Ten-to, Twenty-to, Twenty-five-to	It is this many minutes until the next hour.	
5	Analogue Clock	A clock that usually has 12 divisions labelled 1 to 12 to represent the hours. The long hand is the minute hand. The shorter hand is the hour hand.	
6	Digital Clock	A clock that shows the time in digits.	$4: 36$
7	Day	A unit of time. There are 365 days in a year.	
8	Week	A unit of time. There are 52 weeks in a year.	
9	Hour	A unit of time. There are 24 hours in one day.	
10	Minute	A unit of time. There are 60 minutes in one hour.	
11	Second	A unit of time. There are 60 seconds in one minute.	
12	AM	AM indicates the morning (before 12 midday). It comes from the Latin for 'before midday'.	6AM is six o'clock in the morning.
13	PM	The afternoon and evening. It comes from the Latin for 'after midday'.	6PM is six o'clock in the evening.
14	24 Hour Clock	The time is given in the number of hours and minutes since midnight.	13: 15 means $1: 15 \mathrm{pm}$

Times Tables and Formal Methods for Addition and Subtraction

1	Multiplication	The operation where a number is added to itself a number of times to form a product.	Synonyms: 'times', 'multiply', 'repeated addition', 'product’, 'lots of' and 'groups of'.
2	Division	The operation where a number is shared or grouped into a number of equal parts.	Synonyms: 'divide', 'share equally' and 'divided by'.
3	Addition	The operation to combine numbers or quantities to form a total or sum. Addition is the inverse of subtraction.	Synonyms: 'sum', 'add', 'plus', 'more', 'total' and 'all together'.
4	Subtraction	The operation to find the difference between two numbers of quantities. Subtraction is the inverse of addition.	Synonyms: 'minus', 'take away', 'subtract', 'reduce', 'take from', 'difference', 'decrease', 'fewer', and 'between'.
5	Inverse Operations	The opposite operation. Inverse operations 'undo' each other.	Addition and Subtraction. Multiplication and Division.
6	Column Method	Lining up numbers and performing an operation using a formal algorithm.	$\begin{array}{r} 52 \\ +\quad 64 \end{array}$
7	Commutative	The order of numbers involved in an operation does not matter and does not affect the answer. Addition and multiplication are commutative. Subtraction and division are not commutative.	$\begin{aligned} & 3+2=\angle+3 \\ & 4 \times 5=5 \times 4 \\ & \\ & 3-2 \neq 2-3 \\ & 10 \div 2 \neq 2 \div 10 \end{aligned}$

